March 24, 2025

Type 1 Diabetes higher from polycyclic aromatic hydrocarbons


Child Growth & Dev Res Center, Isfahan Univ, Iran
Source: Journal Diabetes Research, Jun 2023

View ONLINE or Download PDF

Chemicals known as Polycyclic Aromatic Hyrdrocarbons (PAH) are formed when fossil fuels are burned such as from cars and trucks. Type 1 diabetes was increased 7.5 fold in girls in the highest 25% exposed to the PAH known as 2-Hydroxynaphthalen. PAH compounds are also formed from cooking meat at higher temperatures.

Purpose
Polycyclic aromatic hydrocarbons (PAHs) are believed to be a possible factor in the development of cancer, ischemic heart disease, obesity, and cardiovascular disease. The objective of this study was to explore the association between certain metabolites of urinary PAH and type 1 diabetes (T1D).

Methods
In Isfahan City, a case-control study was carried out involving 147 T1D patients and an equal number of healthy individuals. The study measured the levels of urinary metabolites of PAHs, specifically 1-hydroxynaphthalene, 2-hydroxynaphthalene, and 9-hydroxyphenanthrene, in both the case and control groups. The levels of these metabolites were then compared between the two groups to assess any potential association between the biomarkers and T1D.

Results
The mean (SD) age of participants in the case and control groups was 8.4 (3.7) and 8.6 (3.7) years old, respectively, (P > 0.05). In terms of gender distribution, 49.7% and 46% of participants in the case and control groups were girls, respectively (P > 0.05). Geometric mean (95% CI) concentrations were: 36.3 (31.4-42) μg/g creatinine for 1-hydroxynaphthalene, 29.4 (25.6-33.8) μg/g creatinine for 2-hydroxynaphthalene, and 72.26 (63.3-82.5) μg/g creatinine for NAP metabolites. After controlling for variables such as the child's age, gender, maternal and paternal education, duration of breastfeeding, exposure to household passive smoking, formula feeding, cow's milk consumption, body mass index (BMI), and five dietary patterns, it was observed that individuals in the highest quartile of 2-hydroxynaphthalene and NAP metabolites had a significantly greater odd ratio for diabetes compared to those in the lowest quartile (P < 0.05).

Conclusion
Based on the findings of this study, it is suggested that exposure to PAH might be linked to an increased risk of T1D in children and adolescents. To clarify a potential causal relationship related to these findings, further prospective studies are needed.

View another category from the menu above.